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Abstract
The number of free sites next to the end of a self-avoiding walk is known as the
atmosphere of the walk. The average atmosphere can be related to the number
of configurations. Here we study the distribution of atmospheres as a function
of length and how the number of walks of fixed atmosphere scale. Certain
bounds on these numbers can be proved. We use Monte Carlo estimates to
verify our conjectures in two dimensions. Of particular interest are walks that
have zero atmosphere, which are known as trapped. We demonstrate that these
walks scale in the same way as the full set of self-avoiding walks, barring an
overall constant factor.

PACS number: 05.50.+q

(Some figures in this article are in colour only in the electronic version)

Consider an n-step self-avoiding walk ω = (ω0, ω1, . . . , ωn) with n + 1 sites ωi ∈ Z
d for

d � 2, and steps having unit length, i.e. |ωi+1 − ωi | = 1.
The number of edges that can be appended to the last visited vertex ωn to create an

(n + 1)-step is called the atmosphere of the walk ω (see figure 1). Clearly the smallest value
of the atmosphere is zero, in which case the walk is called trapped. A zero-step self-avoiding
walk has atmosphere 2d, and for n � 1 any n-step self-avoiding walk has atmosphere of at
most 2d − 1.

We partition the set of n-step self-avoiding walks by the value of their atmospheres.
Denote by cn the number of n-step self-avoiding walks starting at ω0 = 0, and by c(a)

n the
number of n-step self-avoiding walks starting at ω0 = 0 with atmosphere a.

The subject of this paper is the fraction of n-step self-avoiding walks with fixed
atmosphere,

p(a)
n = c(a)

n

cn

, (1)

and its limiting behaviour as n → ∞.
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Figure 1. A self-avoiding walk on the square lattice Z
2 with n = 20 steps and an atmosphere

a = 2.

(This figure is in colour only in the electronic version)

The atmosphere was introduced by Rechnitzer and van Rensburg [1] for self-avoiding
walks. Since it is well established theoretically, though not proven, that

cn ∼ A1µ
nnγ−1 (2)

they immediately pointed out that the mean atmosphere could be used to estimate the
connective constant µ and exponent γ since

〈a〉 =
∑

a

ap(a)
n =

∑
a ac(a)

n

cn

= cn+1

cn

. (3)

Subsequently they have generalized this elegant idea to self-avoiding walks near walls [2] and
recently to self-avoiding polygons [3]. It is worth pointing out that the notion of atmosphere
is also central to kinetic-growth algorithms such as the Rosenbluth algorithm [4] and PERM
[5] (although it is not referred to by that name in the description of these algorithms).

Motivating this paper is recent interest in various subsets of walks that do not trap [6, 7]
including prudent walks [8–10]. The question that naturally arises for each class of walks is
‘Does the number of walks in the class scale in the same way as the full set of self-avoiding
walks’; that is, as in equation (2) with the same values of µ and γ .

It is then natural to consider the limits

p(a) = lim
n→∞

c(a)
n

cn

. (4)

In this paper we demonstrate results in the literature [11, 12] can be used to prove

lim inf
n→∞

c(a)
n

cn

> 0, (5)

and so that if one assumes the limit exists then one has immediately that

p(a) > 0. (6)

Going further and assuming the scaling in equation (2) we can therefore predict

c(a)
n ∼ A

(a)
1 µnnγ−1, (7)

where

A
(a)
1 = p(a)A1. (8)
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Hence walks that trap, that is, those with atmosphere zero will have the same connective
constant and same value of exponent γ as all self-avoiding walks. Conversely the same is true
for walks that do not trap.

Furthermore we use the Monte Carlo Algorithm flatPERM [13] to provide estimates for
p(a)

n up to length n = 512 on the square lattice Z
2, and use the corrections-to-scaling to

extrapolate high-precision estimates of p(a).

Theory. Intuitively one would expect that the probability that the end of a long self-avoiding
walk ω ends at the corner of a cube Q of fixed size, but otherwise does not intersect with
the cube, i.e. being confined to the exterior of the cube except for its endpoint, is non-zero.
Therefore one can append to this walk, a short walk, contained within the cube with fixed
atmosphere. Using a related argument, we shall prove below that the limit inferior of p(a)

n is
bounded away from zero.

Our main result is the following theorem, which is a corollary of a theorem in [11].

Theorem 1. Let 0 � a < 2d. Then

lim inf
n→∞ p(a)

n > 0,

and

lim sup
n→∞

p(a)
n < 1.

This theorem is very similar to a result concerning tail patterns of self-avoiding walks.

Definition 2. A self-avoiding walk P = (p0, p1, . . . , pk) is called a tail pattern if there is a
self-avoiding walk ω = (ω0, ω1, . . . , ωn) such that P = (ωn−k, ωn−k+1, . . . , ωn). P is called
a proper tail pattern if for all sufficiently large n there is a self-avoiding walk having P as a
tail pattern.

Let cn[P ] be the number of n-step self-avoiding walks with tail pattern P. We have the
following result, which is taken from [11, 12].

Proposition 3. If P is a proper tail pattern then

lim inf
n→∞

cn[P ]

cn

> 0.

When applying this proposition for the proof of theorem 1, we find that the main difficulty
is that the atmosphere of a proper tail pattern P and the atmosphere of a self-avoiding walk
having P as a tail pattern can be different.

Proof of theorem 1. It is sufficient to show that for any atmosphere a with 0 � a < 2d

there exists a proper tail pattern Pa with atmosphere a and the additional property that any
sufficiently long self-avoiding walk having Pa as a tail pattern also has atmosphere a. The
first inequality then follows as an immediate consequence of proposition 3, as c(a)

n � cn[Pa],
and therefore

lim inf
n→∞ p(a)

n = lim inf
n→∞

c(a)
n

cn

� lim inf
n→∞

cn[Pa]

cn

> 0.
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The upper bound follows now from the observation that
∑2d−1

a=0 p(a)
n = 1, as

lim sup
n→∞

p(a)
n = lim sup

n→∞

⎛
⎝1 −

∑
a′ �=a

p(a′)
n

⎞
⎠

� 1 +
∑
a′ �=a

lim sup
n→∞

(−p(a′)
n

)

= 1 −
∑
a′ �=a

lim inf
n→∞ p(a′)

n < 1.

The pattern Pa is constructed as follows. Consider a self-avoiding walk ω which starts at
the origin, visits precisely 2d − a neighbouring vertices and ends on the corner of a cube
Q containing it. Continue ω by a self-avoiding walk ω′ on the set of vertices ∂Q which
have distance 1 from Q and which is Hamiltonian on ∂Q. The pattern Pa which is obtained
by reversal of steps is a proper tail pattern. It has atmosphere a, and by construction the
atmosphere of any sufficiently long self-avoiding walk having P as a tail pattern must also
be a. �

Note that the idea of this proof generalizes easily to different notions of atmosphere, such
as a k-step atmosphere given by the number of (n + k)-step self-avoiding walks which can be
grown from an n-step self-avoiding walk.

Simulation results. Backed up by the rigorous results, we now consider results of simulations
for self-avoiding walks on the square lattice Z

2. Using flatPERM, a flat-histogram kinetic
growth algorithm, we have grown 109 walks at length 512. The flatPERM algorithm is
a stochastic growth algorithm [13], which performs an estimation of the whole density of
states (here, atmospheres) and can be interpreted as an approximate counting algorithm.
The algorithm combines the pruned-enriched Rosenbluth method (PERM) [5] with umbrella
sampling techniques [15]. The configurations of interest are grown from scratch adding a step
at each step. We parameterize the configuration space in such a manner that the algorithm
explores it evenly; here, the algorithm aims to generate the same number of samples for each
value of the atmosphere. As a consequence of using a flat-histogram method with respect to
the atmosphere, we could boost the occurrence of zero-atmosphere walks roughly by a factor
of 3, with minimal computational overhead.

From figure 2 it is clear that the quantities p(a)
n approach an asymptotic value quickly as

n → ∞ with only small corrections to scaling.
Figure 3 shows that these corrections are asymptotically linear in 1/n. We therefore

conjecture on the basis of our simulations that the limit

p(a) = lim
n→∞

c(a)
n

cn

indeed exists. A linear fit can be used to obtain estimates for p(a), and we find that

p(0) = 0.009 096(4) (9)

p(1) = 0.054 76(1) (10)

p(2) = 0.225 00(2) (11)

p(3) = 0.711 14(3) (12)

for self-avoiding walks on the square lattice Z
2. Using the relation µ = ∑

k kp(k) for the
connective constant µ, we obtain the estimate

µ = 2.638 18(3), (13)
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Figure 2. A plot of the probability p
(a)
n of an n-step self-avoiding walk on the square lattice Z

2

having atmosphere a. p
(a)
n for a = 0, 1, 2, 3 (from bottom to top) on a logarithmic scale versus

1/n are shown. We note that there are only small corrections to scaling.
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Figure 3. A plot of the probability p
(a)
n of an n-step self-avoiding walk on the square lattice Z

2

having atmosphere a. p
(a)
n for a = 0 (bottom right), 1 (bottom left), 2 (top right), 3 (top left) on

a linear scale versus 1/n, together with linear fits of p
(a)
n to 1/n computed from all walks with at

least 100 steps are shown.
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which is consistent with µ = 2.638 158 5303 . . . [14]. Just as is the case with connective
constants, atmospheres are of course non-universal quantities, in contrast to, say, critical
exponents, and should be accorded the appropriate importance.

Due to the close connection between atmospheres and the connective constant, we expect
the value of the atmospheres to be unchanged when considering self-avoiding walks near a
wall.

The notion of atmospheres for polygons as introduced in [3] is somewhat different from
the notion of atmosphere for walks. For polygons, the atmosphere depends on the actual
algorithm used for adding and deleting edges, and one needs to consider outer and inner
atmospheres. Moreover, while the atmosphere for walks is bounded, the atmosphere for
polygons is not. It would be desirable to derive similar results to those presented here for
polygon atmospheres.
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